
NASA CR-54250 - - 
C A L  Report  AI-1821:A-3 

COMMENTS ON THE SOLUTION OF THE SPALL-FRACTURE 

PROBLEM IN THE APPROXIMATION OF LINEAR ELASTICITY 

William J .  Rae  

prepared for  

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

CONTRACT NO. NAS 3 - 2 5 3 6  

CORNELL AERONAUTICAL LABORATORY, INC. 
of Cornel1 University 

Buffalo, New York 14221 
I 

GPO PRICE $ 

OTS PRICE(S1 $ 

Hard CODY (HC) $3 & . .  

Microfiche (MF) 

i 

IJHRU) 



L 

c 
? 

NOTICE 

This repor t  was p repa red  as an  account of Government  sponsored  work. 

Neither the United States ,  nor  the National Aeronaut ics  and  Space Admin- 

is t ra t ion (NASA), nor  any person  acting on behalf of NASA: 

A) Makes any war ran ty  o r  representat ion,  e x p r e s s e d  o r  implied,  

with respect  to the accuracy ,  comple teness ,  o r  usefulness  of 

the information contained in this repor t ,  o r  that  the use  of any 

information, appara tus ,  method, o r  p r o c e s s  d isc losed  in  this  

repor t  may not infringe privately owned r ights ;  o r  

Assumes any l iabil i t ies with respec t  t o  the u s e  of, o r  f o r  

damages resulting f r o m  the use  of any  information, appara tus ,  

method o r  process  disclosed in  this repor t .  

B) 

As used above, "person acting on behalf of NASA" includes any employee 

o r  cont rac tor  of NASA, o r  employee of such  cont rac tor ,  to  the extent that  

such employee o r  cont rac tor  of NASA, o r  employee of such  cont rac tor  

p repa res ,  disseminates ,  o r  provides  a c c e s s  to, any  information pursuant  

to h i s  employment o r  cont rac t  with NASA, o r  his  employment with such  

contractor .  

Requests fo r  copies of this repor t  should be r e f e r r e d  to 

National Aeronautics and Space Adminis t ra t ion 
Office of Scientific and Technical Information 
Attention: AFSS - A  
Washington, D. C. 20546 

C A  



I i > 

NASA CR-54250 
CAL Report  AI-1821-A-3 

TOPICAL REPORT 

COMMENTS ON THE SOLUTION OF THE SPALL-FRACTURE 
PROBLEM IN THE APPROXIMATION OF LINEAR E+AS,TI,CITY 

I i  

William J .  Rae 

prepared f o r  

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

. 
January 1965 

CONTRACT NO. NAS 3-2536 

Te c hni cal Mana geme nt 

NASA - Lewis Research  Center 

Space Electr ic  Power Office 

Martin Gutstein 

1' 

CORNELL AERONAUTICAL LABORATORY, INC. 
of Cornel1 University 

Buffalo, New York 14221 

i 



? 
c 

F O R E  WORD 

T h i s  d o c u m e n t  d e s c r i b e s  a p o r t i o n  of the  r e s e a r c h  conduc ted  i n  a 

s t u d y  of t he  app l i ca t ion  of the b l a s t - w a v e  t h e o r y  of m e t e o r o i d  i m p a c t  to  the 

p r o b l e m  of s p a c e  r a d i a t o r  des ign .  O t h e r  publ ica t ions  g e n e r a t e d  u n d e r  th i s  

NASA-sponsored  p r o g r a m  inc lude  " N o n s i m i l a r  So lu t ions  f o r  I m p a c t -  

G e n e r a t e d  Shock  P r o p a g a t i o n  i n  S o l i d s ,  "GAL R e p o r t  AI- 1821-A-2 ,  NASA 

CR-54251 ,  J a n u a r y  1965, and "On t h e  P o s s i b i l i t y  of S i m u l a t i n g  M e t e o r o i d  

I m p a c t  by t h e  U s e  of L a s e r s ,  "CAL R e p o r t  AI-1821-A-1,  NASA CR-54029 ,  

A p r i l  1964. 
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ABSTRACT 

This report  presents  a study of the tensile s t r e s s e s  produced when a 

compress ive  spherical  wave is reflected f r o m  a plane, s t r e s s - f r e e  surface.  

Two c l a s ses  of exact solution of the problem, within the approximation of 

l i nea r  elasticity,  a r e  reviewed. In one c lass ,  the incident s t r e s s  distribu- 

tion is  spherically symmetr ic ,  while in the other it is only axisymmetr ic ,  

allowing a variation in one angular coordinate. 

exis ts  between the two c l a s ses  in the laws relating the strength of incident 

and reflected waves. The implications of this difference on the reflection 

of impact-generated s t r e s s  waves a r e  discussed. 

A significant difference 

The exact solution f o r  c a s e s  where the incident wave exhibits spher -  

ical  symmet ry  is examined in detail, and simple quadrature  formulas  f o r  

obtaining the reflected s t r e s s  profile fo r  a given incident waveform a r e  p r e -  

sented. These resul ts  a r e  compared with the commonly used solution which 

cons iders  only the s t r e s s e s  due to a source and its image. 

under which this fu r the r  approximation i s  acceptable a r e  discussed. 

The conditions 

The limitations of a l i nea r  elastic model in predicting spa11 f rac ture  

a r e  pointed Out, and the a r e a s  most  in need of fur ther  s tudya re  indicated. 

, 
/- 

- 
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. 
LIST OF SYMBOLS 

a in See. IV, the radius of applicatian of p re s su re  p - s e e  

Eq. (20);  in Sec, function defined in Eq. (65) 

constants defined in Eq. (Y l j  

function defined in Eq. (65) 

a,,  6, 
b 

,$i, 9 in See. IV, functions defined in Eq. (34) ;  inSec. V, functions 

defined in Eq. (61) 

function defined in Eq. (64) fi3(r) 

C weak-wave speed in l inear  shock-speed, particle -speed relation, 

s ee  Eq. (1) 

Cl dilatational wave speed, 1.w' 
C, shea r  wave speed, 4' /7' 
D 

8, B' - 
E 

F 

function defined in Eq. (65) 

functions defined in Eq. (76) 

projecti le kinetic energy 

displacement potential, Sees. I1 and V; magnitude of point force,  

See. TV 

functions defined in Eq. (47)  

function defined in Eq. (105) 

= c\/cz 
functions defined in Eqs. (49 - 51) 

h t a rge t  thickness 

H(&l,) function defined in Eq. (16) 

i !fi 
1 angles defined in Eq. (58) 

functions defined in Eq. (27)  
* N, 2 
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Qo,’/2 

P, 

R, I?’ 

S 

s 
t 

Lc, ‘J 

c/T 

pres su re ;  also Laplace t ransform variable  

magnitude of applied pressure  - see  Eqs. (20)  and (21) 

functions defined in Eq.. (23) 

cylindrical  coordinates 

spherical  coordinates 

cavity radius 

shock radius 

in See. 111, distances defiped in the sketch accompanying Eq. (16); 

in See. V, distances defined in Eq. (58) 

distances defined in the sketch preceding Eq. (58) and in Eq. (87) 

in Sec ,  11, constant in the l inear  shock-speed, par t ic le-speed 

relation, s e e  Eq. (1); elsewhere, s = ‘ / c z  

t ime 

shock speed, par t ic le  speed, Eq. (1) 

var iable  defined in Eq. (64) 

displacements in the r and 2 directions 

displacement in the /? direction 

functions defined in Eq. $101) 

functions defined in Eq. (76) 

= q t \/z + A J 3  
variable  defined in Eqs. (763 and (81) 

in Sec. IV, functions defined in Eq. (28); in See. V, functions 

defined in Eq. ( 7 6 )  
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function defined in Eq. (79) 

var iable  defined by one of Eqs. (41 - 43) 

angles defined in sketch accompanying Eq. (16) 

L a m i  constants 

A Poisson 's  ratio, i, = 
2 O + p )  

variable  defined in Eq. (1 1) 

ta rg  et  dens it y 

normal  s t r e s s  

mean s t r e s s  

shea r  s t r e s s ;  a l so  used as a dummy variable;  a lso as a time 

variable in Sec. V, s e e  Eqs. (69), (74), and (81) 

displacement potentials, see  Eq. (7) 

denotes conditions, respectively, along the incident dilatational 

wave, incident shea r  wavey dilatational and shea r  waves generated 

by first reflection of incident dilatational wave 

denotes rea l  o r  imaginary part  
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I. INTRODUCTION 

The impact of fast-moving particles drives s t rong compression waves 

into a solid body. 

a r e  reflected as tensile waves. Depending on the intensity and waveform of 

the incident pulse, the tensile s t r e s s e s  generated upon reflection m a y  cause 

a f r ac tu re  nea r  the f r e e  surface,  a process  r e fe r r ed  to as spallation. 

Damage of this s o r t  can be a source of grea t  concern in cer ta in  situations, 

f o r  example in the case  of space radiator systems.  

When such waves a r r i v e  a t  a s t r e s s - f r e e  surface,  they 

2 

A prec ise  theoretical  treatment of the spallation problem is made 

difficult by the fact  that different equations apply during successive s tages  

of the deformation, In the ea r ly  stages,  f o r  example, the compression con- 

s i s t s  of a strong shock wave, whose motion through the solid is descr ibed 

by the equations of a compressible ,  inviscid fluid. 

propagates into the target,  and the mater ia l  strength then begins to play a 

role. During this stage,  plastic deformation predominates f o r  a while, and 

ult imately the ent i re  process  becomes elastic.  

The shock decays a s  it 

Many approximations have been proposed f o r  treating this problem. 
.h 

One of the s imples t  of these'" is to  use the inviscid, compressible-fluid 

description up to the point where the incident wave first reaches the f r e e  

sur face .  F r o m  that instant on, the motion is a s sumed  to be descr ibed by 

the c lass ica l  equations of l inear  elasticity, using the p r e s s u r e  distribution 

behind the shock to give the incident compressive s t r e s s  distribution. The 

ent i re  problem is then reduced to the s imple question: 

a r e  developed along the axis of symmetry when a given compress ive  s t r e s s  

wave ref lects  f r o m  a plane, s t r e s s - f r ee  boundary? 

What tensile s t r e s s e s  

.*a 

-'* See, fo r  example, Ref. 3, Appendix A. 

1 

~~~ ~ 
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The fact  is that this question has never  been thoroughly examined, 

although the needed resul ts  a r e  contained in a number of papers ,  par t icu-  

l a r ly  f r o m  the f ie ld  of seismology. The principal objective of this repor t  

is to extract  these resul ts  in a f o r m  part icular ly  suited to the spallation 

problem, using them to evaluate fur ther  approximations that can be used, 

and to shed light on the effects of various parameters .  

The approximation in which the spal l - f racture  problem is to be 

t rea ted  in this report  is  formulated in Section 11. 

there  of the present  s ta te  of knowledge of the s t r e s s  distributions that a r e  

generated in hypervelocity impact. 

to be a specified function, the question of its reflection f r o m  a f r e e  surface 

is then posed in the l inear  elastic approximation. 

A brief review is given 

W i t h  the incident distribution considered 

Solution of the specified elastic problem begins in Section I11 with a 

review of a method of solution which uses  a p re s su r i zed  cavity a s  the source  

of the spherical  disturbance, together with an image sys t em to p re se rve  

the boundary conditions a t  the f r e e  surface. 

various portions of the image system a r e  presented in detail,  in o r d e r  to 

a s s e s s  their  relative importance. 

f i les  which r i s e  instantaneously to a maximum and then decay rapidly, the 

maximum tensile s t r e s s  a t  the front of the reflected wave can be adequately 

calculated by the approximation that considers only the source  cavity and an  

image cavity experiencing the same pressure ,  but with opposite sign. 

The contributions a r i s ing  f r o m  

It is shown that, f o r  incident s t r e s s  pro-  

In Section IV, a second c l a s s  of solution is considered, in which the 

incident wave is  generated by the application of a point force  to one f r e e  s u r -  

f ace  of a slab. 

angular  variation not present  in the spherically symmetr ic  solution. 

The wave that results is  spherical  in shape, but displays an  

This 
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angular variation gives r i s e  to a n  increase in the amplitude of the reflected 

wave. 

Section V returns  to a consideration of the spherically symmetr ic  

case ,  and the solution f o r  a point source and i ts  image sys t em is cas t  in 

the f o r m  of a quadrature  formula f r o m  which the reflected s t r e s s  profile 

can  be calculated, once the incident profile is known. 

The report  concludes with a discussion of the a r e a s  where deficien- 

c ies  s t i l l  exis t  in the l inear-elast ic  t reatment  of the problem, and mention 

is made of the most  important a reas  in which improvement over  such a 

model should be sought. Finally, the implications of these studies on the 

interpretation of spal l - f racture  experiments a r e  pointed out. 

3 AI-1 821 -A-3  



11. STATEMENT O F  THE PROBLEM 

General  Cons ide rations 

When a projecti le s t r ikes  a solid target  at high speed, a shock wave 

i s  generated which becomes approximately spherical  in shape a f te r  a 

period severa l  t imes that required for  the projecti le to t rave l  its own length. 

The shock decays in s t rength a s  it propagates through the target  and 

ultimately degenerates to an elastic wave. 

surface,  it is reflected a s  a tensile wave, whose amplitude may be sufficient 

to cause a spa11 fracture .  

t a rge t  thickness is required to  prevent such a f rac ture ,  when the projecti le 

m a s s  and velocity a r e  specified. 

4 

If it encounters a s t r e s s - f r e e  

The fundamental problem is to determine what 

If the ta rge t  is sufficiently thin, o r  the impact speed sufficiently high, 

the reflection will take place in a region where the target  is incapable of 

sustaining tensile s t r e s s ,  and a puncture results.  At the other  extreme,  

where the target  is sufficiently thick in relation to the sever i ty  of the impact, 

the reflection will follow the classical  equations of elasticity. 

mediate regime, the plastic and viscoelastic behavior of the target  play a 

role. 

In the inter-  

A rigorous theoretical  treatment of such a complex problem, valid f o r  

all regimes,  is obviously quite difficult. 

imate  t reatment  in which the plastic regime is ignored entirely;  instead, the 

ta rge t  i s  a s sumed  to behave like a compressible,  inviscid fluid up to the 

instant when the shock reaches the f ree  surface;  thereaf ter ,  the c lass ica l  

equations of l inear  elasticity a r e  assumed to apply, with the incident s t r e s s  

distribution given in t e r m s  of the pressure  distribution behind the incident 

shock. the purpose of this 

r epor t  is to examine i ts  predictions m o r e  fully. 

This report  p resents  an  approx- 

3 This approximation has  been proposed before; 

4 AI- 1 82 1 -A-  3 
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It should be emphasized that the problem, when formulated this way, 

is capable of solution without regard to the specific details  of the incident 

waveform. As is  typical of l inear  problems, it is possible to identify a n  

indicial response; the solution f o r  a specific excitation is then expressed  

a s  a convolution of the incident profile with this indicial response. 

Incident-Wave Profile 

A considerable amount of information is now available concerning the 

ea r ly  period of deformation, during which the target  deforms as a com-  

p res  sible,  inviscid fluid. Numerical solutions of the equations appropriate 

to this regime were  first reported by Bjork, 5 y  who used the par t ic le- in-  

cell  method to obtain results in aluminum, iron, and tuff. More recently, 

Walsh4’ 

to produce resul ts  with great ly  improved resolution fo r  an expanded list of 

made use of both a particle-in-cell  and an Euler ian computer code 

mater ia l s ,  including lead and polyethylene plastic. Para l le l  developments 

based on blast-wave theory have provided useful approximations. Many 8-1 1 

of these analytical developments a r e  summar ized  in Ref. 1. 

A typical representation of the p r e s s u r e  distribution along the axis 

of symmet ry  is shown in Fig. 1. The coordinate sys tem used is a cylindri-  

ca l  one, with origin a t  the impact point on the f ront  face  of the target.  

5 AI-1821-A-3 



The ta rge t  thickness is denoted by h 
represents  the (spherical)  radius of the shock at any instant. 

, while R, , a function of time, 

The curves of Fig. 1, taken f rom Ref. 1, a r e  based on the approxima- 

tion that the flow can be represented as one half of a spherical ly  symmetr ic  

disturbance. 

momentum is zero  by symmetry.  

the natural  scale  of distance in the problem, 

cube root of the energy re lease  divided by the character is t ic  p re s su re  in the 

Such a flow is sensitive only to the total energy available; its 

12 Thus, a s  in a l l  explosion problems, 

, is proportional to the 

medium. It was shown in Ref. 9 that this p re s su re  is givenby /Fz ’ 
where  Po is the target  density under normal  conditions, and C i s  the 

weak-wave velocity appearing in the l inear  shock speed-part ic le  speed rela- 

tion 

F o r  most  mater ia l s ,  the value of C is approximately equal to the bulk 

dilatational wave velocity. Typical values of S l i e  in the range f r o m  1 

to 2. 

13 

It should be emphasized that the curves of Fig. 1 a r e  intended only to 

convey a general  impression of the disturbance generated by impact. 

quantitative significance is l imited by the approximations on which they a r e  

based. 

a r e  not spherically symmetr ic ;  f o r  

would differ somewhat f r o m  that shown in Fig. 1. Fur thermore ,  scaling 

with respect  to energy alone is not exactly cor rec t ,  a s  Walsh and his  

co  -wo r k e r s  have shown. 

Their  

F o r  example, the s t r e s s  distributions generated by an actual impact 

e #  0 , the p r e s s u r e  distribution 

4, 7 
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The general  nature of the pressure  distribution reveals a discontinuous 

jump a t  the wave, followed by a relatively s teep  decay. 

have a l so  been observed in the results of Allen and Goldsmith, 

These features  

14 who ca l -  

culated the s t r e s s  waves generated by applying, to the inter ior  of a spherical  

cavity in an  infinite medium, a pressure  that r i s e s  instantaneously to a 

maximum, and then decays exponentially. 

Conversion to Incident S t r e s s  Profile 

In the present  approximation, the mater ia l  response is assumed to 

become elastic a t  the instant when the incident wave reaches the r e a r  s u r -  

face 2 = /q . With such an approximation, the basic differential equations 

describing the motion become linear. Thus it is unnecessary to be specific 

about the waveform of the incident pulse. It is sufficient to find the solu- 

tion f o r  a step-function; results for an  a r b i t r a r y  waveform may then be 

found f r o m  a Duhamel integral. Nonetheless, it  is instructive to indicate 

one method by which the incident waveform might be specified. 

F o r  example, the incident s t r e s s  distribution can  be calculated by 

equating the p r e s s u r e  f f rom the fluid-mechanical theory to the mean 

s t r e s s  . Allen and Goldsmith have pointed that the product CT 

t imes  the spherical  radius e satisfies the plane-wave equation, i. e. , 

/ 
where  and p a r e  Lame  constants, k the t ime, /=(e) the value of 

the displacement potential a t  R = 0 , and C, is the dilatational wave 

speed 

xc2y-i c,' = 
Po 

(3) 

7 AI-1821-A-3 
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Thus, specification of the pressure  versus  distance a t  a given t ime t, is 

equivalent to specifying Cr, at a t ime, f o r  the s t ress -wave  analysis ,  

Once the function F 

ponents; f o r  example 

is known, i t  can be used to find the other  s t r e s s  com-  

Knowledge of the function /= over a given range of a t  one instant is 

equivalent to  knowing i t  over  a displaced range a t  a l a t e r  instant, since it 

depends only on the character is t ic  coordinate k- Rl,(-, : 

D E D E 

B 
*I? I *I? 

Thus, known conditions along A 0  a r e  sufficient to determine conditions 

along DE . To find out about the range C D  , it is necessary  to know 

what was  happening a t  e = 0 during the time interval AC . 
F o r  incident waves which lack spherical  symmetry,  the above consid- 

erat ions do not apply, and a m o r e  elaborate description of conditions behind 

the incident wave is necessary.  

8 AI-1821-A-3 



Simple Reflection Formulas  

Much of our present  understanding of the mechanism of spa11 f r a c t u r e  

’ G A % 

has come f r o m  consideration of the plane-wave c a s e  (see,  fo r  example, 

1% 

the t reatment  by Rinehart and Pearson  in Ref. 15). In that case ,  the exact 

F R E E  sur?Fqc& - 

solution of the equations of elasticity reveals that the reflected wave is the 

z 
I c / -  

E 
I -- . . . y, /’ ” 

inverted image of the incident wave: 

I 

I I I - 
A simple extension of this solution to the spherical  c a s e  is to a s sume  that 

the solution is still given by the sum of the incident wave and i ts  inverted 

image, allowing both contributions to decay with distance the way they would 

solution of the problem. One of the objectives of the present  report  is to 

determine how good the approximation is. 

9 AI-1821-A-3 
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111. WAVES DUE TO A SPHERICAL CAVITY 

. 
One means of studying the reflection of spherical  s t r e s s  waves is to 

examine the disturbance produced by applying a p r e s s u r e  to the in te r ior  of 

a spherical  cavity in the medium. The waves that resul t  have spherical  

symmetry,  and the i r  reflection at a f r e e  surface has  been considered in  

recent papers by Aliev” and by Kinslow. l 8  This section presents  a review 

of their  work, noting the physical significance of the various contributions 

to the solution. 

Basic Relations 

The cavity, of radius Kc , is located with its center  a distance h 
f r o m  the f r e e  surface.  Cylindrical coordinates and Z 

radius are  measured  f r o m  the center  of the cavity 

, and spherical  

Displacements in the r , 3 and e directions a r e  denoted by U , 

and /J , respectively. In t e r m s  of these displacements, the normal  

s t r e s s e s  cj- and shea r  s t r e s s e s  Z a r e  given by 

10 AI-1821-A-3 



T = q - c -  ax 9J- +") + z p  U 
cp ar d t  Y 

while the equations of motion take the f o r m  

+ %- f- 2'G-Z 
ar a t  r 

These equations can be decoupled by use of the displacement potentials , 
, and @ , defined by 

11 AI-1821 - A - 3  



The equations that resul t  a r e  

where  C; = r/p. . 
Source Solution 

The solution f o r  the case  where the cavity experiences a p r e s s u r e  

0 ,  t d 0  

( 9 )  
%)= R= e, ( - p q  -t 2 0  

has  been given by Blake, l 9  and others. It can be wri t ten in the f o r m  

where 

= c , t  - 14 

and where Poisson’s  ratio is denoted by -$ 

the displacements and s t r e s s e s  have been presented by Blake, l 9  by Aliev 17 

and by Allen and Goldsmith, l4 who present  detailed resul ts  for  the c a s e  

. Complete expressions f o r  

12 AI-1821 -A-3 



Image System 

In o r d e r  to find how this disturbance is reflected f r o m  the f r e e  s u r -  

face,  one is l ed  to consider the effect of a second spherical  cavity, a l so  of 

radius RC , and located a t  2= 2h . Aliev makes use  of such an 

image, allowing it to experience the s a m e  p res su re  as the cavity a t  2 = 0 .  

The resul t  is to produce ze ro  shear  s t r e s s  at the f r e e  surface,  but a non- 

z e r o  normal  s t r e s s  CE . If, on the other  hand, the image cavity exper-  

iences the same  p res su re  a s  the original one, but with opposite sign, the 

s t r e s s  TE 

is developed. In e i ther  case,  the cavity a t  2 = z h  is not enough; the 

is made zero  at the f ree  surface,  but a net s h e a r  s t r e s s  TfE 

complete image sys tem must  include a second contribution distributed along 

the f r e e  surface in such a way a s  to cancel the nonzero s t r e s s  due to the 

two cavities.  
.b 1- 

The s t r e s s  components a r i s i n g  f r o m  the two cavities can  be visual-  

ized by considering a spherical  displacement which decays with e , c o r -  

responding to a compression 

J. 

''. P r o f e s s o r  Norman Davids of the Pennsylvania State University has  
pointed out to the author in a private communication (April  23, 1964) that 
the s a m e  conclusion can  be reached simply by considering a source  
potential 
The author  is ve ry  grateful to Professor  Davids f o r  a v e r y  informative 
discussion of this problem. 

# = r-' f (r- c,t) , and an  image potential c$ = -r- '$(r+G i) . 
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F o r  the case  where a compression is applied to both cavities (as  Aliev 

does),  this sketch of versus  can be used to construct the displace- 

ments a t  four  points (all having different values of /e ) nea r  the f r e e  s u r -  

face.  The displacements have the appearance 

&; \ 

fi 
\ 

7 

F r o m  this sketch i t  can be seen  that the displacement gradients a r e  a s  

follows 

.r 

I 
Note that, at the interface, the contributions to and to (2x& ' 

coming f r o m  the two cavities are  of opposite sign, while the contributions 

to i""/..), and(a%t)r a r e  of the same sign. Thus the net effect of two 

compress ive  cavities is to produce zero shea r  s t r e s s  

but a nonzero normal  s t r e s s  T2 . 
Tr2 a t  the surface,  

On the other hand, if a tensile s t r e s s  is applied to the inter ior  of the 

image cavity, so  that it generates  displacements which increase with 
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the resultant displacements have the appearance 

and the associated gradients a r e  as  follows 

In this case,  the contributions to L(, (hy'&) and a r e  of oppo- 
t 

s i te  sign and cancel, while the contributions to 

add. Thus there  is  no normal  s t r e s s  T2 a t  the f r e e  surface,  but a net 

s h e a r  s t r e s s  ,L is developed, whose sign is negative 

2Uht and (av!r) 0 t 

' ft 
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In addition to the image cavity, then, the complete solution requires  the 

application of a positive distribution of 

Effect  of the Surface Distribution 

As mentioned ear l ie r ,  the approximation is often made that the surface-  

Trt- on the f r e e  surface.  

distributed shea r  s t r e s s e s  can  be neglected, and that only the compressive 

source  cavity and tensile image cavity need to be considered. 

work, l 8  f o r  example, is based on this approximation. 

Kinslow's 

To est imate  the accu-  

racy  of the approximation, it is  necessary to determine the s ize  of the con- 

tribution f r o m  the surface s t r e s ses .  An answer can  be found by making a 

slight modification of Aliev's results,  since the solution f o r  a compressive 

sou rce  and tensile image can be found mere ly  by changing, in Aliev's work, 

the sign of the displacements due to the image (for example, the sign of fz 

in Aliev's Eqn. 2 .4  is reversed).  F o r  the case  where the source  cavity 

experiences a step-function pressure  

the result ing shea r  s t r e s s  produced a t  the surface is given by 

. 
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The angle 9 is  defined a s  &s - ' r  , as shown below 
R 

and 9, and b, a r e  defined a s  before, s o  that 

These results a r e  shown in Fig. 2 for the case  - h = 3 , 3 = - I . e 4 
As noted above, the shear  s t r e s s  produced b; the two cavities is 

negative; to cancel it, a positive s t r e s s  of the same  magnitude must  be 

added, resulting in s t r e s s e s  within the target,  in addition to those gener-  

a ted  by the cavities. 

facts  a r e  important. The first is that Tr8 is of the o r d e r  of 

i. e . ,  i t  is generally of the same  order  a s  the s t r e s s e s  produced by the 

cavi t ies .  On the other hand, i t  is significant to note that the additional 

applied s t r e s s  is ze ro  a t  

make  no contribution along the axis a t  the f ront  of the reflected wave. 

In assess ing  the magnitude of this contribution, two 

P, ' ) 2 5 h  

r = 0 ; thus, according to ray-theory,  2o it will 

The 
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s a m e  conclusion is derived below in Section V f o r  the c a s e  of a point-source 

disturbance, namely, that fo r  incident waves having spherical  symmetry ,  

the tensile s t r e s s  developed at the front of the reflected dilatational wave, 

along the axis of symmetry,  i s  exactly that given by the source  and i ts  

image. Behind the front, the simple solution is no longer cor rec t ,  but even 

there  the approximation will be shown (in Section V)  to be acceptable pro-  

vided the s t r e s s  amplitude decays rapidly enough behind the incident wave. 

Off -Axis Conditions 

At points located off the axis of symmetry,  but on the reflected dila- 

tational wave front, the effect of the surface s t r e s s e s  is compressive.  Thus 

the source-plus  -image approximation will  overest imate  the tensile s t r e s s  

at these points. 

identifying the sur face  s t r e s s e s  that mus t  be added, he approximates their  

This conclusion can be discerned in Aliev’s results.  After  

effect  by r ay  theory, using fo r  this purpose the resul ts  of Bagdoev, a 

s u m m a r y  of which has recently appeared in translation. 21 Aliev’s resul t  is 

c that  the jump is s t r e s s  [r2] across  the reflected dilatational wave is 

given by 

9” 1 7 1‘- 
where  Pt and e, a r e  defined in the sketch above, and f70 is  the value 

of the p r e s s u r e  in the source cavity a t  & = 0’ . Figure  3 shows the va r i a -  
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tion of with e, f o r  3) = 1 / 4 .  The leading t e r m  (unity) in the l a s t  

bracket  of Eq. (15) represents  the tensile jump, due only to the source  and 

image. The next t e rm,  involving /-/ , is of opposite sign, representing 

a compressive effect. 

Thus it appears  that, f o r  incident waves having spherical  symmetry,  

the source- image construction is exact a t  the front of the reflected wave, 

along the axis of symmetry,  where the maximum tensile stress is likely to 

be developed. 

would add a compressive contribution, while at points on the axis  of symme-  

t r y  behind the reflected dilatational wave , the considerations given in 

Section V suggest that a more  exact solution does not a l t e r  the maximum 

tensi le  s t r e s s ,  at l ea s t  f o r  incident wave fo rms  which decay rapidly. 

Kinslow's Work 

F o r  points off the axis of symmetry,  a m o r e  exact solution 

The above conclusions a r e  of importance in interpreting the work of 

18 Kinslow, who makes use  of the source-image approximation, applying it 

to incident waves which a r e  finite sums of the Blake-type19 solution. The 

p r e s s u r e  in the source  cavity i s  taken to be 

Actually, because of the conditions applied to find the coefficients 

de rivative s of 

a re  s e t  equal to zero  a t  

can  be summed a s  

f ;  (all 

, 

t = 0 ) ,  Eq. (17) becomes a binomial s e r i e s ,  which 

f9 , beginning with the f irst  and ending with the ( M - l ) d  

1 9  AI-1821-A-3 



Kinslow presents  resul ts  f o r  selected values of d and Y) , evaluating , 
f r o m  the formula 

P 

where  c is the target  s t ress-wave speed, , the radius of the c r a t e r  

that would be produced in an infinite target ,  

face,  and 'J the par t ic le  velocity behind the incident shock when it 

reaches the f r e e  surface.  

r the depth of the f r e e  s u r -  
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IV. WAVES DUE TO A POINT FORCE 

A second means of representing incident s t r e s s  waves like those 

encountered in hypervelocity impact is to consider  the application of a force  

to one side of a s lab  of finite thickness. 

which propagates into a s lab due to the application of a distributed force  

The solution f o r  the disturbance 

23 The and by Thiruvenkatachar. 22  
has  been presented by Huth and Cole, 

solution describing the reflection of these waves by a second f r e e  surface 

has  been given by Thiruvenkatachar. The waves induced by application 

of a point force,  and the i r  subsequent reflection, a r e  discussed by Broberg,  

and by Davids. 

24 

25 

26 

A point force generates a wave whose shape is spherical ,  but the 

Fur thermore ,  s t r e s s  distribution behind it is not spherically symmetr ic .  

an incident shea r  wave is generated; no such fea ture  appears  in the solu- 

tions of the previous section. 

The most  distinctive feature  of the solutions discussed below is that 

the laws relating the s t rengths  of incident and reflected waves differ consid- 

e rab ly  f r o m  those that apply fo r  spherically symmetr ic  waves. 

purpose of this section is to discuss this feature. 

The main 

Distributed, Step-Function Load 

It is instructive to s t a r t  f rom the solution fo r  a step-function p r e s s u r e  

applied over  a c i rc le  of radius a 

21 
b 
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i P 

I 
2a 

/ 
Z = O ,  2 - = h  

Te = 0 2=c) 

The c a s e  t rea ted  by Thiruvenkatachar 239 24 makes use  of a delta function 

instead of the unit s tep 

point force  F applied a t  = 0 .  Thus i t  should be possible to recover  

the l a t t e r  resul ts  by taking the limit o , P-c , in such a way 

that 

J- (6) . The problem solved byDavids is that of a 

Both of these authors employ the Laplace t ransform to der ive formal  ex- 

press ions  fo r  the t ransforms of the various s t r e s s  components. These ex- 

press ions  a r e  then expanded in se r i e s  whose successive t e r m s  represent  

the incident, reflected, and multiply reflected waves. F o r  example, it  is 

possible to sketch the progress  of the various waves along the axis = 0 

in a f diagram 
> 
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I 

0 h 
In the analysis that follows, only the incident dilatational (P)  wave, and 

the reflected dilatational (Pf) and s h e a r  (p5) waves a r e  accounted for.  

Thus the resul ts  given below give no information about the s ta te  of affairs  

that exists a f te r  passage of the incident shea r  ( 5 )  wave. 
.I. -,- 

The Laplace t ransform of the solution f o r  an applied p r e s s u r e  

can  be found by replacing p , wherever it occurs  in Thiruvenkatachar 's  

analysis ,  by p/* 

p l ( e )  

, where 8 denotes the t ransform variable  

00 

Rj9 = 1 m e  - P t &  (22) 

T2 , in 

0 

With this replacement, the t ransform of the s t r e s s  component 

the region affected only by the incident dilatational wave, and the reflected 

dilatational and shea r  waves (i. e . ,  the tr iangle,  in the sketch above, 

bounded by the l ines f l = h  , t =&/& ) is 
24 t= 0 , 

% - - - c [ ~ o + ~ ,  p + Q z  -* i 
J. 

"* Very  l i t t le is known at present  about the charac te r i s t ics  of waves of this 
type that a r e  generated in hypervelocity impact. 
do not admit such waves, and they have apparently not been observed a s  yet 
i n  solutions which include mater ia l  strength.  27 

Hydrodynamic analyses '> 4 y  
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where  

In these expressions,  To and denote Bessel  functions of the f i r s t  

kind. The functions h/l , dL , a( , and 1 are given by 

p =/E'+ tx; 
In general ,  the inversion of these t ransforms i s  ra ther  complicated, but can  

be effected by use of Cagniard's  method. 28 The process  is relatively 

s imple r  when applied to conditions along the axis of symmetry,  par t icular ly  

a t  the wavefronts. The remainder of this section is devoted to the extraction 

of these results.  

Inversion of the Transforms 

Thiruvenkatachar begins the inversion of these integrals by making 

the change of variable 
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which leads to 

where  

The next s tep  is to use an  integral representation for the Bessel-function 

p roduc t 
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where  , %- , and a r e  defined by 

7 - If the re- 
Note that >c depends on a , v , ,  and $ , but not on 

maining Besse l  function is a l so  replaced, by the integral  representation 

and if the o r d e r  of integration is changed, the result  is 
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Cagniard 's  technique is now applied to these, by making the changes of 

variable,  in (38), (39), and (40), respectively 

cLt = h (gJ;;;;"+dw)-E/- + L f y j P ? a s f  
(43) 

var ies  f r o m  ze ro  to infinity, f- t r aces  out a path in the complex As 7 
plane: 

The path of integration can be deformed, 28 so that it l i es  along the real 

axis in  the t - p l a n e ,  and the result  is 
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c, 

where  

, - 7  

and where the (complex) var iable  

the ( r ea l )  var iable  

(46) can  now be inverted by inspection. 

tributions of the three  waves to  the s t r e s s  along the axis  of symmet ry  a r e  

found to be 

is  defined a s  an implicit  function of 

by Eqs.  (41) - (43), respectively. Equations (44) - 

If r is s e t  equal to zero,  the con- 

where  
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and where e is to be replaced by Q in Eqs. (41) - (43). If the limit 

Q-0 , p-ar, is now taken, with abz vr , then no longer 

depends on 9 ; the integrals in (49) - (51) can be worked out, and the result  

is 

In these last three  equations, 
-r(' 

by Eqs. (41) - (43), with e = 0 .  

is defined a s  an implicit function of ?k 
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S t r e s s  Discontinuities at the Wavefronts 

Along each wavefront, is zero.  The values of the s t r e s s e s  

at the wavefront can be determined rel- 
QP , Q)PP ’ GhS 

atively easily, and a r e  found to be 

In c ross ing  any given wave, the contributions f r o m  the other  two waves a r e  

continuous; thus Eqs. (55) - (57) also give the s t r e s s  discontinuities that 

occur  a c r o s s  the various waves. 

All of the foregoing formulas ag ree  with Davids’ resul ts .  26 Equations 

(55) - (57), for  example, can be used to  recover  the stress discontinuities 

shown in Fig. 8 of Ref. 2 6 ,  and can a l so  be derived f r o m  the general  

formulas  given there.  

(55) - (57) add up to ze ro  a t  the f r e e  surface 

Other checks can  a l so  be made; fo r  example, Eqs. 

t = h  . 
The most  striking feature  of the expressions f o r  the stress discontin- 

uit ies l i es  in the fac t  that they differ considerably f r o m  those describing 

spherical ly  symmetr ic  waves. In particular,  the s imple source-plus- image 

approximation would s a y  that the formula f o r  the jump in s t r e s s  a c r o s s  the 

reflected dilatational wave ought to be derivable f r o m  the incident s t r e s s  
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formula  [Eq. (55)) by changing the sign, and replacing 2 by zh-2 . 
But such is not the case.  

f lec ted  a s  a tensile wave of amplitude ( 1 + 2 4 + 3 ) 4  , + 8 % 3 )  , a number 

which is typically on the o r d e r  of two. 

A compression wave of unit amplitude is r e -  

The reflected s h e a r  wave then im- 

pa r t s  the amount of compression needed to preserve  the ze ro  s t r e s s  condi- 

tion at the f r e e  surface.  Moreover, the contribution f r o m  the reflected 

shea r  wave is  nonzero even at as h , in fur ther  cont ras t  to the spher i -  

cal ly  symmetr ic  c a s e  

It is c l ea r  that such an amplification of the tensile s t r e s s e s  generated 

To upon reflection has an important bearing on the spa11 f r ac tu re  problem. 

fully a s s e s s  its importance, however, two factors  must  be examined. 

first is to determine how the amplification factor  f o r  reflected waves de- 

pends on the degree of departure  f rom spherical  symmetry.  

t he re  i s  no information available at present  that might be used to infer this 

dependence. 

the incident s t r e s s  distributions encountered in hypervelocity impact depart  

f r o m  spherical  symmetry.  At present,  the only pertinent information avai l -  

able consis ts  of the p r e s s u r e  distributions found in the numerical  solutions. 

The 

Unfortunately, 

The second i tem requiring attention is to determine how far 
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V. SPHERICAL POINT-SOURCE SOLUTION 

The discussion of the two previous sections indicates that a definitive 

solution fo r  reflected s t r e s s  profiles cannot be given until the effect of 

off-axis variations in the incident s t r e s s e s  have been examined m o r e  fully. 

In spite of this reservation, it is nevertheless instructive to pursue the 

solution of the spherically symmetr ic  c a s e  further.  This section presents  

such a study, using f o r  the excitation a point source instead of a cavity of 

finite radius. The purpose of this section is twofold: f i r s t ,  to show explicitly 

how the classical  resul ts  of Cagniard, 28 long known in the field of s e i s -  

mology, can be applied to the present problem; and second, to a r r i v e  a t  

some ve ry  general  conclusions about the shape of the reflected s t r e s s  pro-  

fi le and the influence of the incident profile by writing the solution in t e r m s  

of a Duhamel integral. 

Basic Relations 

The coordinate sys tem is the s a m e  a s  that used ea r l i e r ,  except that 
.?I *F 

some new notation is introduced 

FREE S U g F A C r  

.b -,* 
The 2 -coordinate used he re  would be h - 3  in Cagniard'sZ8 notation. 

used h e r e  differ by Thus, the -f -displacements and the derivatives 
a s ign f rom those of Cagniard. The s t r e s s  TE , which involves only 
W / B t  , can be taken directly from Cagniard's  results by s imply replacing 
2 by h - 2  - 
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/ e and denote distance f r o m  the source and image, respectively, 

while e, and cL descr ibe the minimum-time path f o r  a wave that t ravels  

f r o m  the source  to the f r e e  sur face  a t  the dilatational-wave speed, and 

thence to the field point 2 a t  the shear-wave speed. The angles I; 
and I, and the distances 6 and pt a r e  determined f r o m  the rela-  

tions (for given r and 2 ) 

h = COS r, h - 2  = R, C O S T ,  

.*. ' 8 .  

In t e r m s  of the displacement potentials defined in Eq. (7), 

ponent F2 along the axis of symmetry f =  0 is 

the s t r e s s  com- 

Method of Solution 

CagniardZ8 wri tes  the general solution in t e r m s  of two influence func- 

tions A and B : 

t 
# = 1 F/ ( t -e )  A ( r j  5 % )  de 

0 

.b 

"* CagniardZ8 uses  y!' and fo r  what a r e  called 4 and $J , respec-  
tively, in this report. 
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where  /= (tb) 

present  purposes to be given in te rms  of the incident s t r e s s  distribution by 

, the displacement potential at the source,  is considered f o r  

Eq. (2). 

The values of tf and change discontinuously a t  various instants, 

signalling the a r r i v a l  of various waves. 

f o r  in Eq. (59) under the integral  signs in Eqs. (60) and (61), there  will be 

contributions f r o m  the r - and Z -dependence of the integration limits. 

F o r  the moment, these contributions will be ignored; they will be added 

la ter .  

Thus in taking the derivatives cal led 

Carrying the derivatives under the integral  sign gives 

rl. 

By use  of the Laplace t ransform,  Cagniard shows that“’ 

where  the t ransform of A3 is  

and where 

a ’ J -  

.tr 

“’ The notation S = I/=, , s = ‘/c, , introduced by Flinn and Dix, is 
used here .  
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The three terms in Eq. (63) correspond to a source,  an  image of opposite 

sign, and a third t e r m  caused by the sur face  s h e a r  s t r e s s e s .  

The t ransform of B(’d) is . 

Inversion of the Transforms for  r = 0 

Most of the emphasis in Cagniard’s t reatment  is on the c a s e  where 

> > i  , the case  of grea tes t  interest  to seismologis ts ,  and the inver -  

sion of the t r ans fo rms  is a f a i r ly  complicated problem. 

e r e d  he re ,  f = 0 , i s  the opposite extreme,  and Cagniard’s  procedure 

f o r  inverting the Laplace t ransforms can be applied ve ry  simply. 

tiating Eq. (64) twice with respect  to r gives 

The c a s e  consid- 

Differen- 

and with the new variable  

Eq. (68) becomes 
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All functions in the integrand on the right a r e  considered to be functions of 

2 ; f o r  example, = DLL((r)j . The inversion can now be accom- 

plished by inspection, giving 

The reason f o r  'evaluating this f i r s t  integral ,  ra ther  than the function itself, 

is to facil i tate a l a t e r  integration by parts.  

s teps  can be used to show that 

Exactly the s a m e  s e r i e s  of 

where,  as in (71), L( (7) is defined by Eq. (69). 

Differentiating Eq. (66) with respect to and 2 , and setting 

r = 0 gives 
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In this case,  the appropriate change of variable is 

which a f te r  inversion leads to 

It is useful to put these resul ts  in dimensionless form,  by introducing the 

notation 

When the differentiations with respect to ? indicated in Eqs. (71), (72), 

and (75)  a r e  c a r r i e d  out, and the results expressed  according to the notation 

in Eq. (76), the resul ts  a re :  

c 
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In Eq. (77), the parameter  r is defined as 

and the quantities x , , o( , / , and b' are  a l l  functions of 

, given by Eq. (69), which becomes 

x =  fC 
In Eq. (78), the functions 

tions of as before (defined in Eq. ( 7 6 ) ) ,  but the dependence of x on 

and 2 is different. It is given by Eq. (74), which becomes: 

o( , p , B , and B' a r e  the same  func- 

The inversion of this leads to a quadratic in K" , the co r rec t  solution of 

which uses  the minus sign: 
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I -  

where  

The functions (v, 4 d L )  (2- Z h ' =  , and 1/3 a r e  shown in Figs.  4 and 

5 fo r  +$ = 1 / 4 .  and 1/, a r e  zero  for  341 , while V3 is ze ro  

f o r  & C T  < .+% (, -?h) . It should be noted that the s u m  I/: qvz + I/ h 3 
vanishes at the f r e e  surface s / h  = 1 .  

T e r m s  Arising f r o m  the Limits 

When taking derivatives under the integral  sign in finding the expres-  

sion f o r  Gz , t e r m s  ar is ing from the r- and ?-dependence of the 

integration l imits were  omitted. These t e r m s  must  now be added. During 

the t ime interval between the a r r iva l  of the incident dilatational wave and 

that of the reflected dilatational wave, the potentials a r e  simply 

I ct=, S = O  

and the corresponding s t r e s s  along the axis is that given e a r l i e r  in Eq. (4) 
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where  the argument 2-s~ is denoted by (-) . After a r r i v a l  of the 

reflected dilatational wave, but before the reflected shea r  wave, the poten- 

tials a r e  = 0 , and 

In arr iving a t  the first two t e r m s  of this expression, 

be ze ro  (as is F’(o) 

evaluating the discontinuities in the solution. Differentiating Eq. (86) 

FCo) is taken to 

below) in accordance with Cagniard’s procedure f o r  

twice with respect  to f leads to a v e r y  lengthy expression involving, 

where  

When f-o , 

Many of the t e r m s  in the lengthy expression f o r  

C = 0 , leaving: 

~x~/ ’rL vanish when 
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where  the argument & - s (zh- %) is denoted by ( t ) . The derivative 

can  be worked out in s imi l a r  fashion, using the fact  that, B 2 4 / 4  f- 0 

a s  Y - 0  Y 

The resul t  is  

When the reflected shea r  wave passes ,  the t e r m s  derived f r o m  6 do not 

@ change, but a new contribution comes f r o m  

t 

sn, + SPL 

=[  F ’ ( t - r ) R ( T ; c t ) d ’ i y  (92) 

When the mixed derivative of this quantity with respect  to r and 2 is 

formed,  and evaluated f o r  r = 0 , it  becomes necessary  to know cer ta in  

derivatives of and pL . These a r e  most  easi ly  worked out by using 

the approximate f o r m  of Eqs. (58) valid for  F-0 

h J, 

.’ J J  

= h t  oha) (93) 
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F r o m  Eq. (93) it follows that a"r , a</at , %-.Ar , 

az'x/a,,.aE a r e  all ze ro  a t  V = 0 , while anL 
The resul t  is 

If all the extra  t e r m s  a r e  now coilected, and the convention used that F 

and all its derivatives a r e  zero  for  negative argument,  the complete ex- 

press ion  f o r  the s t r e s s  becomes 

F u r t h e r  simplifications of this expression a r e  now possible. 

l ines  correspond to the solution that would be given by the source  and i ts  

image. 

cat ion of Cagniard 's  method, it can be shown that 

The first two 

Some of the remaining te rms  a r e  zero ;  by a straightforward appli- 
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Thus A3 (3 ( ~ h - 2 ) ;  0, 2) = 0 . By differentiating (96), it  is found that 

- 16 - - 
j3s (zh-2)” 

and it can a l so  be shown, either by differentiating (96) o r  by inverting 

aA3/23 , that 

Finally, inverting ashr reveals that 

Thus Eq. (95) is reduced to 

(97) 

The l a s t  two t e r m s  can now be absorbed through an integration by parts.  

Le t  
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Then 

Since 

I 6  - - - 4 lx =o - 
c, h” 9 3  ( I + (h-t)/$q y 

The final expression fo r  f12 can be wri t ten in the f o r m  
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, -  

The integral  appearing he re  collects a l l  of the correct ions to the source-  

image solution that a r i s e  f r o m  the surface-distributed s h e a r  s t r e s s .  It 

introduces no discontinuities, even a t  the reflected shea r  wave, and has  

the effect only of altering the profile. 

Final Formula 

It is useful to employ the dimensionless variables 

In t e r m s  of these,  Eq. (104) becomes 

The function a/' appearing in this integrand is to be found f r o m  the inci- 

dent s t r e s s  profile, f o r  example by the method descr ibed in Section 11. 

The variation of the influence function appearing in the integrand of 

Eq. (106) is shown in Fig.  6 f o r  the case  z/h = 0. 8 , c, t/ h = 1. 5 , 

9 = 1 / 4 .  F o r  points a s  yet unaffected by the reflected s h e a r  wave, the 

effect of the integral  i s  to contribute an  additional tensile component. 

passage of the shea r  wave, a compressive contribution is felt.  

the integral  correct ion t e r m  will not be very  grea t  in cases  where 

falls sharply f r o m  its maximum, since the integrand rapidly becomes smal l  

under such circumstances.  

General  Conclusion 

After 

Actually, 

2 " 

It must  be emphasized that Eq. (106) is  res t r ic ted  to cases  with spher -  

ically symmetr ic  incident waves; f o r  such cases ,  the integral  in Eq. (106) 
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represents ,  in a general  but concise way, the correct ion to the source-  

image sys tem due to the surface-distributed shea r  s t r e s s e s .  Generally 

speaking, the correct ion t e r m  will have the effect of modifying the 

ref lected-stress  profile slightly, but will leave the maximum tensile s t r e s s  

unchanged, especially fo r  profiles which decay rapidly. 
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VI. CONCLUDING REMARKS 

It is well to re i te ra te  in conclusion the approximation that fo rms  the 

bas i s  of this entire study, namely, the use of a l inear  e las t ic  model. In 

applying the results above to the interpretation of spal l - f racture  experi-  

ments,  se r ious  reservations must  be held concerning the effects of non- 

e las t ic  response. 

no attempt has  been made to invoke a f rac ture  cri terion. Even if the l inear  

e las t ic  model is accepted, one must still decide whether o r  not the f rac ture  

s t r e s s  is  time-dependent. It is unfortunately the case  that the resul ts  of 

spallation experiments a r e  the product of an  unknown mixture of wave- 

propagation effects and fracture-cr i ter ion effects. 

l i t t le hope of drawing firm conclusions about the relative importance of 

these two sources  of uncertainty, except f r o m  experiments done in internally 

instrumented targets.  

These may affect the wave propagation itself. In addition, 

There  would appear  to be 

On the other hand, it is important, in constructing a rational theory 

f o r  this problem, to be s u r e  that all the implications of even the most  

primitive approximation a r e  fully understood. 

s e a r c h  has  been to reveal the significance of the simple source- image 

model. 

exact l inear-elast ic  results for  cases where the incident wave is spherically 

symmetr ic .  F o r  such cases ,  and for  incident s t r e s s  distributions which 

dec rease  rapidly behind the incident wave, the maximum tensile s t r e s s  (on 

the axis of symmetry,  a t  the wave front)  can safely be calculated by the 

source- image model. 

One contribution of this r e -  

Results derived f r o m  such a model depart  only slightly f r o m  the 

A m o r e  important result  has been to call  attention to the fact  that the 

reflection laws inherent in the source-image model may  be drast ical ly  
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changed f o r  cases  where the incident s t r e s s  distribution is not spherically 

symmetr ic .  

f lected with more  than unit amplitude f r o m  a f r e e  surface.  

not enough is known about this solution a t  p resent  to indicate the connec- 

tion between the degree of amplification and the extent of departure  f r o m  

spheric  a1 symmetry.  

In such cases ,  compression waves of unit amplitude a r e  r e -  

Unfortunately, 

One of the i tems necessary  in elucidating these questions is  a physical 

explanation of why an amplification occurs  a t  all. 

a study be made of incident s t r e s s  distributions whose angular variations 

a r e  intermediate between those of the spherically symmetr ic  case  and those 

generated by a point force.  

p resent  in existing hydrodynamic and viscoplastic solutions should be exam- 

ine d. 

It is a l so  important that 

Finally, the extent of angular variations 

Until a thorough investigation of these points is made, it mus t  be 

recognized that there  is no firm theoretical basis  fo r  many of the conven- 

tional rules of thumb often used in dealing with spal l  f r ac tu re  - -  fo r  example 

the unit reflection coefficient, and the relation between the spall  thickness 

and the wavelength of the incident disturbance. 
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